Predictive Big Data Analytics
A Study of Parkinson’s Disease using Large, Complex, Heterogeneous, Incongruent, Multi-source & Incomplete Observations
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BlIG DATA FOR DISCOVERY SCIENCE

We propose, implement, test, and validate comp
model-based and model-free approaches for Par

ementary
Kinson’s

Disease (PD) classification and prediction. To explore PD risk
using Big Data methodology, we jointly processed complex
PPMI imaging, genetics, clinical and demographic data.

We aim to aggregate and harmonize all the data, jointly
model the entire data, test model-based and model-free
predictive analytics, and statistically validate the results
using n-fold cross validation.

The defining characteristics of Big Data include: large size,
incongruency, incompleteness, complexity, multiplicity of
scales, and heterogeneity of information-generating sources.
These pose challenges to the classical techniques for data
management, processing, visualization and interpretation. A
unique archive of Big Data on Parkinson’s Disease is
collected, managed and disseminated by the Parkinson’s
Progression Markers Initiative (PPMI), N=600.

Data Elements demographics, clinical tests (physical, verbal
learning and language, neurological and olfactory (U Penn
Smell Identification Test, UPSIT) tests), vital signs, MDS-
UPDRS scores (Unified Parkinson's Disease Rating Scale), ADL
(activities of daily living), Montreal Cognitive Assessment
(MoCA), Epworth Sleepiness Scale, REM sleep behavior
questionnaire, Geriatric Depression Scale (GDS-15), and
State-Trait Anxiety Inventory for Adults, and 3D sMRI
(http://www.ppmi-info.org/access-data-specimens).
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We tested generalized linear models (with fixed and random effects) as well
as multiple classification methods to discriminate between Parkinson’s
disease (PD) patients and asymptomatic healthy controls (HC).

Previous studies have reported results of integrating multiple types of data to
diagnose, track and predict Parkinson’s disease using imaging and genetics,
genome-wide association studies, animal phenotypic models, molecular
imaging, pharmacogenetics, phenomics and genomics. However, few
studies have reported strategies to efficiently and effectively handle all

available multi-source data to produce high-fidelity predictive models of

neurodegenerative disorders.

The main contributions of this study include:

o an approach for rebalancing initially imbalanced cohorts,

o applying a wide spectrum of automated classification methods that
generate consistent and powerful phenotypic predictions (e.g., diagnosis),

o developing a reproducible machine-learning based protocol for
classification that enables the reporting of model parameters and
outcome forecasting, and

o using generalized estimating equations models to assess population-wide
differences based on incomplete longitudinal Big Data.

Predictive Analytics

o Model-based approaches included generalized linear models (GLM),
mixed effect modeling with repeated measurements (MMRM), change-
based models, and generalized estimating equations (GEE),

o Model-free predictive analytics involved forecasting, classification, and
data mining. Specific examples of such model-free methods include
AdaBoost, support vector machine (SVM), Naive Bayes, Decision Tree, KNN,
and K-Means classifiers. Both types of approaches (model-based or model-
free) facilitate classification, prediction, and outcome forecasting (e.qg.,
disease state) using new or testing data containing the same clinical,
demographic, imaging and phenotypic data elements.
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Resource Availability: All raw PPMI data is available from the PPMI
consortium (www.ppmi-info.org/data). The computational protocol, source-
code, scripts, and derived data we generated as part of this study, along with
the complete GSA pipeline workflow are available in the BDDS GitHub
repository (https://github.com/BD2K/BDDS).

Developed reproducible protocols for end-to-end data
analytics to provide a scalable solution to discovery-based Big
Data science, facilitate active trans-disciplinary collaborations,
and entice independent community validation of algorithmic
modules, atomic tools, and complete end-to-end workflows.

High power to predict Parkinson’s disease (consistent
accuracy, sensitivity, and specificity exceeding 96%, confirmed
using statistical n-fold cross-validation). Clinical (e.g., Unified
Parkinson's Disease Rating Scale (UPDRS) scores),
demographic (e.g., age), genetics (e.qg., rs34637584, chr12), and
derived neuroimaging biomarker (e.g., cerebellum shape
index) data all contributed to the predictive analytics and
diagnostic forecasting.
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