

Center for Big Data in Translational Genomics (Genomics Center)

September 30th 2016

NIH/NHGRI 5U54HG007990-03

Genomics Center

- Collaboration of:
 - UCSC
 - David Haussler, Benedict Paten
 - UCB
 - Dave Patterson, Anthony Joseph, Lior Pachter
 - OHSU
 - Brian Druker, Adam Margolin
 - UCSF
 - Laura van't Veer
 - CalTech
 - Barbara Wold, Mitch Guttman
 - Sage Bionetworks
 - Justin Guinney

Genomics Center Research Aims

1: **APIs**

Pioneer common Application Programming Interfaces (APIs) for big genomics data in biomedicine.

2: Benchmarking

Create a continuously operating benchmarking platform for methods of large-scale genomics analysis.

3: Big Data Genomics Software

Develop large-scale genomics analysis tools that interact with the genomics data APIs.

4: Driver projects

Pilot APIs and tools in a variety of large and small projects in different areas.

Problem: Genome Data Held in Silos, Unshared, not Standardized for Exchange

No one institute has enough on its own to make progress. Every clinician should be able to compare their genomes to others.

We need a network for sharing

Global Alliance for Genomics & Health

What is the Global Alliance?

The Global Alliance for Genomics and Health (Global Alliance) is an international coalition, dedicated to improving human health by maximizing the potential of genomic medicine through effective and responsible data sharing. The promise of genomic data to revolutionize biology and medicine depends critically on our ability to make comparisons

What is the Global Alliance doing?

Since its formation in 2013, the Global Alliance for Genomics and Health is leading the way to enable genomic and clinical data sharing. The Alliance's Working Groups are producing high-impact deliverables to ensure such responsible sharing is possible, such as developing a <u>Framework for Data Sharing</u> to guide governance and research and a

Who is involved?

The Global Alliance for Genomics and Health is an independent, non-governmental alliance, made up of hundreds of worldleading organizations and individuals from across the world. The Global Alliance is focused on bringing together a diverse set of key stakeholders across regions and sectors, including leaders in healthcare and research,

GA4GH Driver Project: Beacons to Discover Data

Protocol Adopters (Fall 2015)

Accomplishments to date

Functional support for:

- Reads : BAM
- Variants and annotations : VCF
- References : FASTA
- Seq Annotations: GFF3
- RNA
- Genotype to Phenotype
- Metadata

Coming soon:

• Other data sources: BED, wiggle

Problem Statement

Secure aggregating counts of relevant patients

Problem Statement

Secure aggregating counts of relevant patients

Problem Statement

Secure aggregating counts of relevant patients

and B.smoker=true and C.r123140=C

DASH

HIPAA

Compliant

FISMA

Framework Overview

Framework Overview

Framework Overview

Decomposition of the query

Compulsory Moore's Law Slide

Compulsory Moore's Law Slide

Toil — Pipeline Architecture for Genomic Workflows

Massively Parallel Workflows (and fire-breathing dragon slugs)

- Massively Scalable tested on 32,000 cores
- Resumable after failure of any node
- Portable installed with a single command
 - Runs on Amazon, OpenStack, Azure and (soon) Google, and existing HPC environments
- Simple built entirely in Python
- Supports CWL and (soon) WDL
- Simple API, based on functional programming principles
- Open-source Fork us!

Develop workflows locally...

Deploy at scale without changing source code!

Toil RNASeq Recompute

Toil RNA-Seq Recompute

http://biorxiv.org/content/early/2016/07/07/062497

End-to-end variant analysis

End-to-end variant analysis does not scale

ADAM provides a stack model for genomics

Genomics is built around legacy file formats:

- E.g., SAM/BAM \rightarrow alignment, VCF \rightarrow variants, BED/GTF/etc \rightarrow features
- Manually curated text/binary flat files

We want a narrow waist:

- Can change storage medium, execution system
- Can make use of horizontally scalable systems like Apache Spark

ADAM makes it easy to write parallel algorithms on top of RDDs, instead of against "Genome walker"

Application Transformations	Users define analyses via transformations	Variant calling & analysis, RNA-seq analysis, etc.
Presentation Enriched Models	Enriched models provide convenient methods on common models	Enriched Read/Variant
Evidence Access MapReduce/DBMS	The evidence access layer efficiently executes transformations	Spark, Spark-SQL, Hadoop
Schema Data Models	Schemas define the logical structure of basic genomic objects	Avro Schema for reads, variants, and genotypes
Materialized Data Columnar Storage	Common interfaces map logical schema to bytes on disk	Load data from Parquet and legacy formats
Data Distribution Parallel FS	Parallel file system layer coordinates distribution of data	HDFS, Tachyon, HPC file systems, S3
Physical Storage Attached Storage	Decoupling storage enables performance/cost tradeoff	Disk, SDD, block store, memory cache

End results compared to legacy systems

- ADAM produces statistically equivalent results to the GATK best practices pipeline
- Our end-to-end pipeline is 3.5x faster while also being 4x cheaper
- In the process of recalling the Simons Genome Diversity Project using ADAM
- We have a working pipeline using both HG19 and GRCh38

Ongoing work

- Completing validation study by recalling SGDP against GRCh38
- ADAM will compete in the VariantDB challenge
- Ongoing work on downstream analysis tools:
 - Avocado
 - o Gnocchi
 - Mango

Dockstore

Brian O'Connor Technical Director, Analysis Core - UCSC Genomics Institute Consultant - OICR

PCAWG Drove Portable Tool Development

http://pancancer.info http://dcc.icgc.org/pcawg

- International Cancer Genome
 Consortium (ICGC)
- ~2,800 Cancer Donors
 - •~1,300 with RNASeq data
 - •~5,800 Whole Genomes
 - Goal is to consistently analyze data
- 14 Cloud (and HPC) environments
 - 3 Commercial, 7 OpenStack, 4 HPC
 - •~630 VMs, ~15K cores, ~60TB of RAM
- 8 sites storing and sharing data via GNOS

Dockstore Tour

Containers	My Containers Do	ocumentation About	Q pcawg briando	co
Available Containers				
Name J.	Author 11	Project Links	Docker Pull	
pcawg-bwa-mem-workflow	Brian O'Connor	GitHub Quay.io	docker pull quay.io/pancancer/pcawg-bwa-	.9
pcawg-sanger-cgp-workflow Keiran Raine		GitHub Quay.io	docker pull quay.io/pancancer/pcawg-sang	.9

Search

ontainer Deta					
ancancer/pcar ast build: 13 days ag	wg-bwa-mem-	workflow			
Info	Labels	Versions	Dockerfile	Descriptor	Docker Pull Command
Name: pcawg-bwa-r Path: quay.io/pancar	nem-workflow ncer/pcawg-bwa-mer	n-workflow			docker pull quay.lo/pancar
Author: Brian O'Connor					Source Repositories
ermair nya GitHub: https://github.com/ICGC-TCGA-PanCancer/Seqware-BWA-Workflow Guayde: https://quayi.o/repository/pancancer/pcawg-twa-mem-workflow Build Mode: Fully-Automated					GitHub 샵 Quay.io 샵
Last Build: Apr. 7, 20	016 at 4:10:11 AM				
Last Update: Apr. 7,		Container Labels			
The Durin Marrie	15. 1	D C	(110-1-C(D)		n/a
The BWA-Mem workflow from the ICGC PanCancer Analysis of Whole Genomes (PCAWG) project. For more information see the PCAWG project page and our GitHub page for our code including the source for this workflow.					Sharing
Usage: # fetch CWL \$> dockstore c # make a runti \$> dockstore c # run it local \$> dockstore l json Doc	wl —entry quay.io me JSON template a onvert cwl2json — ly with the Dockst aunch —entry quay kstore.json	/pancancer/pcawg-b nd edit it cwl Dockstore.cwl ore CLI .io/pancancer/pcaw	wa-mem-workflow:2.6 > Dockstore.json vg-bwa-mem-workflow:	.8 > Dockstore.cwl 2.6.8 \	
0 Comments De	ockstore.org			🚯 Login -	

Building communities to advance science.

DREAM Challenges: crowdsourcing quantitative solutions in biomedicine

Future of DREAM: continuous benchmarking

Continuous evaluation and comparison of methods as new data or new algorithms become available.

What is required to do continuous benchmarking?

- Challenge management & data store
- Containerized tools
- Rerunnable workflows
- Cloud compute

Motivation for the BRCA Exchange

BRCA variation is relatively common with well known medical implications

- Lifetime risk of developing breast or ovarian with pathogenic BRCA mutation
- Men with pathogenic BRCA mutations are also at risk for prostate cancer
- Drug treatment: PARP inhibitors show effectiveness for BRCA1/2 patients

Motivation for the BRCA Exchange

BRCA variation is relatively common with well known medical implications

No single source for BRCA variant information

- ClinVar is incomplete:
 - European projects
 - Individual papers and submitters
 - Some organizations can't pay the cost of preparing a submission

Motivation for the BRCA Exchange

BRCA variation is relatively common with well known medical implications

There is no single source for BRCA variant information

High numbers of VUSs, where classification is limited by being unable to see all the data on a variant

Motivation for the BRCA Exchange within GA4GH/BD2K

Focus on two genes to efficiently and effectively lay the foundations for GA4GH sharing, both legally and technically.

search for "c.1105G>A", "brca1" or "IVS7+1037T>C"

Just type in box above and use auto-complete to search for BRCA1 or BRCA2 variants. For more information about the BRCA1 and BRCA2 genes, genetic variation, and cancer, please click the *About* link at the top of the page.

This website is supported by the BRCA Exchange of the Global Alliance for Genomics and Health. The BRCA Exchange advances our understanding of the genetic basis of breast cancer, ovarian cancer and other diseases by pooling data on BRCA1/2 genetic variants and corresponding clinical data from around the world.

CIMBA

(The <u>Consortium of Investigators of</u> <u>Modifiers of BRCA1/2</u>)

Each repository contributes distinct information on BRCA variation

Combined, BRCA Exchange has **13,500** individual deduplicated variants.

Acknowledgements

Molly Zhang BRCA Challenge Steering Committee

Charlie Markello BRCA Challenge Evidence Gathering Group

Benedict Paten BRCA Challenge Interpretation Group

Mary Goldman

Brian Craft

Gunnar Rasch

Rachel Liao

Memorial Sloan Kettering Cancer Center..

IH Big Data to

Global Alliance for Genomics & Health